

Implementation of IPM Packages for Vegetable Crops in Developing Countries

R. Muniappan

Director, Integrated Pest Management (IPM IL)
Office of International Research, Education, and Development,
Virginia Tech

IPM Innovation Lab Host Countries

- Asia
 - Bangladesh
 - Nepal
 - Cambodia
 - Vietnam
- Africa
 - Ethiopia
 - Kenya
 - Tanzania

Major Aspects of IPM IL

- Development of IPM components and packages for selected crops.
- Monitor and develop management technologies for invasive species.
- Long-term training.
- Short-term training.

IPM Packages for Tomato

- Raising healthy seedlings
- Treating seeds or seedlings with *Trichoderma*, *Pseudomonas fluorescens*, and *Bacillus subtilis*.
- Solarizing seed beds and greenhouses.
- Using VAM, neem cake, and other organics.
- Selecting virus-resistant varieties.
- Grafting on resistant rootstock for bacterial wilt, Fusarium, and others.
- Staking and mulching.
- Yellow sticky trapping of whiteflies, leafminers, etc.
- Pheromone trapping of Helicoverpa and Spodoptera.
- Rogueing and host-free period for control of virus diseases.
- Using biopesticides such as neem.
- Using microbial pesticides, such as NPV, Metarhizium, and Beauveria.

Coconut pith/dust use in vegetable seedling production

Trichoderma – a beneficial fungus

- Its use became very popular in Asia.
- IPM Innovation Lab conducted four workshops.
- We are introducing this technology into the African countries.

Trichoderma Production in Bangladesh

Eggplant and tomato grafting

Eggplant grafting in Bangladesh

- •Eggplant yield ↑ 249% in Bangladesh.
- •Income ↑ 305% in Bangladesh.
- •Technology transferred to India, Nepal, Philippines, Uganda, Honduras, Senegal, and Kenya.

Pheromones for monitoring insect pests

Area-wide management of melon fly using pheromone and other traps in Bangladesh

Cuelure trap
Mashed sweet melon trap

NPVs for Spodoptera & Helicoverpa

Production of Parasitoids and

Predators

Neem Products

Neem Tree

Neem Flowers

Neem seed extract production

Neem Insecticide

Tuta absoluta

South American tomato leafminer.
Introduced to Spain in 2006.
Spread throughout Europe, most of
West and East Africa and recently to
India, Nepal and Bangladesh.

Tuta absoluta Migration

uta absoluta – Establishment

FEEDIFUTURE Land Solution Establishment in Nepal

(July 2016)

Establishment of Tuta absoluta in Bangladesh (May 2016)

Tuta absoluta Workshop

Flow Chart - Technology Transfer

Mission Involvement in IPM Innovation lab Activities

Meyer in Virus Diseases Workshop

Mission with IPM IL Partners

Kneuppel at Agricare Meeting

Meyer in a Tomato Farm

IPM IL and KISAN Demonstration Fields

IPM IL and KISAN Activities

IPM IL Training Session for Kilst Nation Lab Council Visit to IPM IL and KISAN Field

Agricare Products and Facilities

Biopesticide and Biofertilizer Products

Agricare Facility

A Stall at the Exhibition

Agrovets in FtF Region

Agrovet Selling Products

IPM IL Scientists Discussing with Agrovets

Agrovet Store

Agrovet Explaining to Visitors

Papaya Mealybug

Origin: Mexico

Spread:

•1990s – Caribbean, Florida, and South America.

•2001-2005 – Micronesia and Hawaii.

•2008-2009 – India, Indonesia, Malaysia, Thailand, and Sri Lanka.

•2010-2011 – Reunion Island, Ghana, Benin, and Nigeria.

•2014 – Tanzania, Mauritius, and Mosambique.

A parasitoid introduced for control of papaya mealybug in India resulted in a benefit between \$500 Million and \$1.34 Billion.

IPM IL Impact Assessment

Country and Authors	Crop	IPM Practice(s)	Net Benefits (millions)
Uganda, Moyo et al., 2007	Peanuts	Virus resistant variety	\$33-36
Mali, Nouhoheflin, et al., 2011	Tomato	Cultural	\$21-24
Uganda, Debass, 2000	Beans and maize	Cultural	\$36-202
Bangladesh, Debass, 2000	Eggplant and cabbage	Cultural practices	\$26-29
Bangladesh, Rakshit et al., 2011	Cucurbits	Pheromone traps	\$3-6
Ecuador, Baez, 2004	Plantain	Cultural	\$59-63
Ecuador, Quishpe, 2001	Potatoes	Resistant variety	\$50
Albania, Daku, 2002	Olives	Cultural	\$39-52
Honduras, Sparger, et al., 2011	Eggplant, onion, tomato, and pepper	Cultural practices	\$17
India, Selvaraj, 2012 (preliminary analysis)	Mulberry, papaya, and cassava	Papaya mealybug parasitoid release	\$500-\$1,340

Thank You.