

INTRODUCTION

Amaranth (Amaranthus spp.) is common African tradition vegetable (ATV). It has been cultivated as a leaf vegetable, grain or ornament for decades. In Tanzania, amaranth is a key vegetable but the average consumption of vegetables is only 40kg dry wt./person/year (Ruel et al.,2005) against the world minimum recommended 73kg dry wt./person/year (Engle et al. 2003; Ojiewo et al. 2014) partly due to poor availability because of low production. Soil moisture is known to cause low leaf, grain yield and nutritional quality. This information is limited in

OBJECTIVE: To evaluate the performance of amaranths entries in vegetative and grain yields and nutritional qualities under different soil moisture regimes.

MATERIALS AND METHODS

Experiments were carried out at World Vegetable Center Eastern and Southern Africa in Arusha from April to August 2018 whereby 3 irrigation frequencies (once every two weeks (IF1), once every week (IF2) and twice a week (IF3) (main-plot) were tested against six amaranth entries AH-TL-Sel and 'Mchicha' (Amaranthus hypochondriacus), Bresil-sel, 'Madiira 1' and 'Madiira 2' (A. cruentus) and a local cultivar with 4 replications (Plate 1). Seeds were sown and transplanted 21 days after emergence into 10L pots having a soil: Sand: FYM mixture in a 3:2:1 ratio (see plate 2) and irrigated with 0.5L/pot using a hand watering can (evenings) but adhering to the tested irrigation frequencies.

Records were taken on weight of marketable yield, grain yield, and quality as crude protein and Fe. Data analyses was done using Genstad Software (Version 20)

Fig 1. Pictures of the six amaranth entries, BRESIL (B)-Sel (A), 'Madiira 1' (B), Mchicha (C), AH-TL-Sel (D), 'Madiira 2'(E) and Local (F), evaluated.

Fig 2. Experimental plots/pots with potting media and the experimental layout

RESULTS AND DISCUSSION

Irrigation frequencies and entries main effects as well as their interactions were highly significant on dry marketable vegetable yield and grain yield (Tables 1-3). 'Madiira 2' and Local did not significantly differ as well as AH-TL-Sel and Mchicha (Table 1). The highest dry marketable yield was produced by 'Madiira 2' followed by local and then Madiira 1 at 12.0, 11.2 and 10.2 kg/plant respectively. The lowest yields were obtained from BRESIL (B)-Sel, Mchicha and AH-TL-Sel with 13.2 g, 10.4 and 9.1 g/plant, respectively (based on IF3). The opposite was true in grain yield whereby the highest grain yields were obtained from AH-TL-Sel, Mchicha and BRESIL (B)-Sel with 16.9, 16.7 and 14.2 g/plant, respectively while 'Madiira 1', 'Madiira 2' and the Local cultivar produced the lowest grains yields, 9.8 g, 5.9 and 4.5 g/plant, respectively (Table 2). Plants irrigated twice every week (IF3) gave the highest vegetable and grain yields.

Irrigation frequency				Irrigation frequency					
Geno-	IF1	IF2	IF3	Mean				-	
type					Genotype	IF1	IF2	IF3	Mean
AH-TL- Sel	13.29	10.31	24.74	16.11	AH-TL-Sel	184.9	240.3	158.5	194.6
BRESIL (B)-Sel	26.25	12.31	14.72	17.76	BRESIL (B)-Sel	292.1	173.2	236.9	234.1
Local	21.77	10.19	15.35	15.77	Local	241.9	158.8	129.7	176.8
Madiira 1	17.88	13.05	17.97	16.30	· Madiira 1	183.4	236.3	196.7	205.5
Madiira 2	8.64	17.07	16.49	14.07	Madiira 1	186.2	216.9	281.1	228.1
Mchicha	13.68	12.41	21.44	15.84		184.1	254.5	198.1	211.6
Mean LSD G= 6.	16.9a 318	12.6a	18.5a	15.98 • 9.619	Mchicha Mean	212.1	213.0	200.2	208.4

LSD G= 36.18

Effect of irrigation frequencies and genotypes on crude proteins in dried amaranth grains

Effect of irrigation frequencies and genotypes on Iron Content (mg/100g) in dried amaranth grains

LSD IF= 44.73

ACKNOWLEDGMENT

Funding for this research was provided by the project "DIVERSIFYING FOOD SYS-TEMS: Horticultural Innovations and Learning for Improved Nutrition and Livelihood in East Africa" Phase 2, financed by The Federal Ministry for Economic Cooperation and Development (BMZ), Germany (grant number 81202141; Project No. 15.7860.8-001.00). We also thank the World Vegetable Center and longterm strategic donors to the World Vegetable Center: Republic of China (Taiwan), UK aid from the UK government, US Agency for International Development, Australian Centre for International Agricultural Research, Germany, Thailand, Philippines, Korea, and Japan. The main author acknowledges The University of Dar Es Salaam for supporting the study through MSc program under DAAD Sponsorship.

Ent AH BR Lo Ma Ma Mo Me LSI

Numbers followed by the same letter in a column or row are not significantly different at P≤0.05 Table 3: Combined ANOVA table for grains and dry vegetative yield

Sou Gra Irrig Ge IF× Dry Irrig

Ger IF×

The overall results showed that suboptimum irrigation decreased both marketable vegetable and grain yields of all the entries. Accordingly, the entries performed well in twice irrigation per week. The dual type entries, AH-TL-Sel, Mchicha and Bresil-sel, performed well in grain yield under all irrigation levels while the vegetable type varieties, 'Madiira 1', 'Madiira 2' and the Local cultivar, performed well in marketable vegetable yield.

REFERENCES

Table 1: Effects of entry and irrigation frequency (IF) on amaranth dry marketable vegetative yield (g/nlant) in not experiment

marketable vegetative yield (g/plant) in pot experiment							
Entry	In	rigation frequ	Mean				
	IF1	IF2	IF3				
AH-TL-Sel	4.915	6.246	9.111	6.758e	_		
BRESIL (B)-Sel	5.412	7.083	13.242	8.579c			
Local	7.038	9.181	17.553	11.257a			
Madiira 1	5.936	8.685	15.887	10.169b			
Madiira 2	6.727	9.824	19.407	11.986a			
Mchicha	4.813	6.606	10.423	7.281de			
Mean	5.8073c	7.9379b	14.271a	9.338	_		
LSDG=0.969	LSD IF=0.792						

Numbers followed by the same letter in a column/row are not significantly different at P≤0.05

Table 2: Effects of entry and irrigation frequency IF) on amaranth grain yield (g/plant) in pot experiment

Irrigation frequency							
ntry	IF1	IF2	IF3	Mean			
H-TL-Sel	7.407	10.043	16.908	11.453a			
RESIL (B)-Sel	5.158	6.998	14.168	8.775bc			
ocal	1.476	2.405	4.545	2.803e			
ladiira 1	3.454	5.896	9.784	6.378c			
ladiira 2	1.878	2.692	5.631	3.401de			
lchicha	7.089	8.415	16.665	10.723ab			
lean	4.4107bc	6.0751b	11.2839a	7.256			
D G=1.099	LSD IF=2.024						

ie 3: Combined ANOVA table for grains and dry vegetative yield							
ource of variation	Df	Ss	Ms	F	Ρ		
rain yield							
rigation frequency (IF)	2	617.14	308.57	37.37	<.001		
enotype (G)	5	808.25	161.65	90.48	<.001		
×G interaction	10	104.53	10.45	5.85	<.001		
ry marketable yield							
igation frequency (IF)	2	930.24	465.12	246.84	<.001		
enotype (G)	5	274.27	54.85	59.01	<.001		
×G interaction	10	116.13	11.61	12.49	<.001		

Whereas Ss -Sum of square; Ms-Mean square; df-degree of freedom; p-probability

CONCLUSION

Engle L, Shanmugasundaram S and Hanson P 2003. Evaluation and utilization of vegetables genetic resources for tropics. Acta Horticulture, 623:263-274

Ojiewo C, Tenkouano A, Oluoch M and Yang R 2010 The role of AVRDC- The World Vegetable Centre in vegetable value chains. African Journal of Horticultural Sciences, 3:1-23.

Ruel M, Minot N and Smith L 2005 Patterns and determinants of fruit and vegetable consumption in sub-Saharan Africa: A multi-country Comparison Background Paper for the Joint FAO/WHO Workshop on Fruit and Vegetables for Health, 1–3 September 2004, Kobe, Japan: 45