Introduction
This guide provides suggestions for evaluating bitter gourd lines. Data recorded at different locations can be compared by researchers participating in World Vegetable Center’s multi-environment bitter gourd variety trials and other varietal evaluation trials.

Choice of land
Select a well-drained area with fairly uniform fertility and slope.

Number of entries
The suggested number of entries is from 5 to 20, which should include one or two locally popular cultivars (open pollinated [OP] or hybrids) at each location as checks (Table 1).

Experimental design
A randomized complete block design (RCBD) with three replications is recommended. Each field trial has border rows on four sides (Fig. 1).

Size of plot
Row length and plant spacing normally used in local production practices are recommended. At the World Vegetable Center (WorldVeg), each entry is grown on a 20-cm high raised bed with 1-row planting. The plot size is 12 m long and 1.6 m wide between furrows (Figure 1). Plant spacing within rows is 1 m. Thus, there would be a total of 12 plants planted in each plot. The plant density is 6250 plants/ha. Any changes in plot dimensions should be reflected in the data sheet.

Cultural practices
For recommended cultural and pest management practices, please refer to:

Suggested Cultural Practices for Bitter Gourd
<table>
<thead>
<tr>
<th>Entry code</th>
<th>Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Plots 1-8</td>
</tr>
<tr>
<td>E01</td>
<td>8</td>
</tr>
<tr>
<td>E02</td>
<td>7</td>
</tr>
<tr>
<td>E03</td>
<td>5</td>
</tr>
<tr>
<td>E04</td>
<td>4</td>
</tr>
<tr>
<td>E05</td>
<td>2</td>
</tr>
<tr>
<td>E06</td>
<td>3</td>
</tr>
<tr>
<td>E07</td>
<td>1</td>
</tr>
<tr>
<td>E08*</td>
<td>6</td>
</tr>
</tbody>
</table>

*Local check cultivar

Table 1. Sample planting plan

Figure 1. Sample field layout for single row planting
Harvesting

Bitter gourd requires close attention at harvest time. Harvest the fruits when they are shiny green/white, thick and juicy, and the seeds are still soft and white. Yields should be recorded on a fresh weight basis. It usually takes 15-20 days after fruit set or 60-75 days from planting for fruit to reach marketable age, depending upon the genotypes. Bitter gourd production can continue for several months under optimum conditions depending on genotypes and the environment, but the yield data for variety field trials can be recorded for only 4 weeks.

Data to collect

Researchers should keep a record of the basic characteristics of the trial site and the management practices employed when conducting a variety trial (Table 2). This information can be useful for explaining varietal performance in different environments. For 1-row planting, data are collected from 10 inner plants. Plant characteristics and reactions to biotic stresses, yield and its components to be collected for each plot are as follows:

1. **Days to 50% flowering:**
 Number of days after transplanting (DAT) to 50% anthesis (50% of plants in a plot have open female flowers). Check plots three times a week and record data in Table 3.

2. **Days to 50% maturity:**
 Number of days after transplanting (DAT) to 50% maturity (50% of plants in a plot have shiny green/white fruits). Check plots three times a week and record data in Table 3.

3. **Biotic stress rating:**
 Evaluate incidence of diseases and insects when the first harvest is done. Record disease incidence as R (=resistant, 70-100% of plants per plot are healthy), MR (=moderate resistant, 50-70% of plants per plot are healthy), MS (=moderate susceptible, 20-50% of plants per plot are healthy) or S (=susceptible, 0-20% of plants per plot are healthy). Check Figures 2-7 for the symptoms of downy mildew, powdery mildew, Fusarium wilt, Cercospora leaf spot, virus and root-knot nematode; and Figure 8 for insect damage symptoms of aphid and melon fly to help you identify, score and record the level of severity (Table 3). For rate the severity of melon fly, count and weigh the number of fruits damaged by melon fly (Table 3 & 4). Other diseases or insect pests with high incidence should be recorded after proper diagnosis.

4. **Number of plants harvested:**
 Count the plants harvested from the 1-row plot. This will indicate population density and help explain low yields in plots with poor stands (Table 4).

5. **Fresh fruit yield:**
 Separate the marketable (worth selling) from nonmarketable fruits (damaged due to biotic and abiotic stress or remarkably tiny fruits) after harvesting. Record weight of marketable and nonmarketable fruits from each plot and the harvest dates. Repeat the process for 4 weeks. The total marketable yield is obtained by adding the yields of individual harvests (Table 4).

 The yield per plot (kg/plot) can be converted into tonnes per hectare with the following formula:

 \[
 \text{Yield (t/ha)} = \frac{\text{Plot yield (kg)}}{1,000 \text{ (kg/t)}} \times \frac{1,000 \text{ (kg/t)}}{10,000 \text{ (m}^2/\text{ha)}} = \frac{\text{Plot yield (kg)}}{10,000 \text{ (m}^2/\text{ha)}}
 \]

 Example of 1-row planting (data collected from 10 inner plants):

<table>
<thead>
<tr>
<th>Plot yield: 25 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvested area: 16 m² (=1 m x 10 plants x 1.6 m)</td>
</tr>
<tr>
<td>Yield = \frac{25 (kg)}{16 (m²)} = 15.6 t/ha</td>
</tr>
</tbody>
</table>

6. **Fruit length, width and weight:**
 Average fruit length (cm), width (cm) and weight (grams) can be calculated from 10 randomly selected marketable fruits (shiny green or white, thick and juicy) in the second harvest (Table 4).

 Example:
 \[
 \text{Total weight of 10 marketable fruits} = 2,300 \text{ g} \\
 \text{Average fruit weight} = \frac{2,300}{10} = 230 \text{ g}
 \]

7. **Remarks:**
 Include any other interesting observations not recorded elsewhere that could help explain the outcome of the trial (Table 3).
Table 2. Sample data sheet for test location and crop management.

<table>
<thead>
<tr>
<th>BITTER GOURD VARIETY FIELD TRIALS: TEST LOCATION AND CROP MANAGEMENT DATA SHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country ___________________________</td>
</tr>
<tr>
<td>Cooperator(s) / data taker(s) ___________________________</td>
</tr>
<tr>
<td>E-mail / address: ___________________________</td>
</tr>
</tbody>
</table>

LOCATION DATA

- Farm or experiment station ___________________________
- State / province / department ___________________________
- LATITUDE: degrees minutes N or S
- LONGITUDE: degrees minutes E or W
- ALTITUDE: above sea level

SOIL

- Previous crop
 - Sandy loam
 - Clay loam
 - Silty loam
 - Other
- Surface texture
 - Sandy loam
 - Clay loam
 - Silty loam
 - Other
- Surface pH
 - >7
 - 6-7
 - <6 or actual value

CLIMATE DATA DURING TRIAL

- Hot-wet
- Hot-dry
- Cool-dry
- Cool-wet
- Other
- Average min. temp. □□ °C
- Average max. temp. □□ °C
- Total rainfall □□□□ mm
- Remarks about deviations from normal ___________________________

EXPERIMENT DATA

PLOT DATA

- Plot width (m) __________
- Plot length (m) ___________________________
- No. of plants/plot __________
- Plant spacing within row (cm) ___________________________

SEEDLING MANAGEMENT

- Bare root
- Seedling tray
- Other ___________________________

PLANTING SCHEDULE

- Date sown □□ □□ □□□□
- Date transplanted □□ □□ □□□□

HARVEST

- 1st □□/□□ □□/□□
- 2nd □□/□□ □□/□□
- 3rd □□/□□ □□/□□
- 4th □□/□□ □□/□□ (day/month)

OTHER PRACTICES

- Mulching
- Staking
- Others, please specify ___________________________

BIOTIC STRESSES OBSERVED AND CONTROL

- Diseases:
 - Downy mildew
 - Powdery mildew
 - Fusarium wilt
 - Cercospora leaf spot
 - Virus
 - Root-knot nematode
 - Other ___________________________
- Control methods:
 - Chemicals applied
 - Others ___________________________

- Pests:
 - Melon fly
 - Aphid
 - Others ___________________________
- Control methods:
 - Chemicals applied
 - Others ___________________________

In your opinion, considering yield, plant type, fruit acceptability to local consumers, and other factors, which are the four best bitter gourd lines?

1. ___________________________
2. ___________________________
3. ___________________________
4. ___________________________
Table 3. Sample data sheet for plant characteristics and reactions to biotic stresses.

<table>
<thead>
<tr>
<th>Plot no.</th>
<th>Rep</th>
<th>Entry code</th>
<th>Days to 50% female flowering</th>
<th>Days to 50% maturity</th>
<th>Incidence of diseases and insects*</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>E07</td>
<td></td>
<td></td>
<td>DM(^1), PM(^1), FW(^1), CLS(^1), Virus(^1), RKN(^1)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>E05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>E06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>E04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>E03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>E08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>E02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>E01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>E08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>E03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>E05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>E01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>E06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>E07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>E04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>E02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>E01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>E06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>E05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>E03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>E04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3</td>
<td>E02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>E08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>E07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) DM (= downy mildew), PM (= powdery mildew), FW (= Fusarium wilt), CLS (= Cercospora leaf spot), RKN (= root-knot nematode)

Rate the plants when the first harvest is done at one of four levels: R (= resistant, 70-100% healthy plants/plot)

MR (= moderate resistant, 50-70% healthy plants/plot)

MS (= moderate susceptible, 20-50% healthy plants/plot)

S (= susceptible, 0-20% healthy plants/plot)

\(^2\) Melon fly: record number of melon fly damaged fruits
Table 4. Sample data sheet to track yield and yield components.

<table>
<thead>
<tr>
<th>Plot no.</th>
<th>Rep</th>
<th>Entry code</th>
<th>No of plants harvested</th>
<th>Average fruit</th>
<th>Fruit yield (kg/plot)</th>
<th>Total M(^{\prime}) wt. (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Length (cm)</td>
<td>Width (cm)</td>
<td>Weight (g)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>E07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>E05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>E06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>E04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>E03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>E08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>E02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>E01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>E08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>E03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>E05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>E01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>E06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>E07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>E04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>E02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>E01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>E06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>E05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>E03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>E04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3</td>
<td>E02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>E08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>E07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

() indicate the date of harvest.
Add more rows if there are more than 8 entries. Add more columns if there are more than 4 harvests.

\(^{1}\) M: marketable fruits
\(^{2}\) NM: nonmarketable fruits
\(^{3}\) MF: melon fly damage fruits
Figure 2. Typical symptoms of downy mildew: small angular and yellowish to pale green lesions coalesce into large spots limited by leaf veins. White to gray mycelia observed on the underside of leaves. Please observe the incidence and rate the plants in Table 3.

Figure 3. Typical symptoms of powdery mildew: white powdery mycelia with aerial spores cover the upper leaf surface, petiole and stem. The infected leaves turn yellow, shrivel and defoliation may occur. Severe infection results in leaf drying and death of the plant. Please observe the incidence and rate the plants in Table 3.

Figure 4. Typical symptoms of Fusarium wilt: vines show partial or complete wilt with or without yellowing. Vascular discoloration is visible inside stems. Severe infection causes death of plant. Please observe the incidence and rate the plants in Table 3. (Source of photos b & c: HY Huang, Kaohsiung District of Agricultural Research and Extension Station, Taiwan)

Figure 5. Above ground symptoms of root-knot nematode include stunting, yellowing and wilting; roots develop knots (galls). Please observe the incidence and rate the plants in Table 3.
Virus-like symptoms include leaf yellowing, leaf rolling or cupping, leaf deformation and/or size reduction. The leaves may also be blistered and/or narrowed with green vein-banding, and/or have chlorotic mosaic and mottle patterns or yellow spots. Buds can become necrotic. Fruits may be small and malformed with green mottle and/or water-soaked lesions. Please observe the incidence and rate the plants (if possible please record the predominant symptom types in remarks) in Table 3.

Figure 6.
Figure 7. The symptoms of *Cercospora leaf spot* include brown or greyish circular rings or circular necrotic spots with white or light tan centers that appear on older leaves. Please observe the incidence and rate the plants in Table 3.
Figure 8. The symptoms of aphid damaged plants include stunted growth, infested leaves that curl downwards, yellowing and cupping of leaves, and presence of honey dew, which is often attended by ants and development of black sooty-mold (left); feeding by melon fly larvae causes yellowing and rotting of the fruit (top right); close-up image of melon fly (bottom right). Please observe the incidence and rate the plants in Table 3 for aphid and Tables 3 & 4 for melon fly.